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Abstract. The notions of systematic and accidental degeneracy are discussed for a quantum- 
mechanical particle in a two-dimensional box. Separability of coordinates is shown to 
admit extra systematic degeneracy over that expected from the point-group symmetry. 
The ‘accidental’ degeneracy for square and triangular boxes is discussed in detail and 
related to geometric symmetries-described by rings of operators, however, and not by a 
symmetry group. 

1. Introduction 

Particle-in-a-box problems are the ABC’s of quantum mechanics. They receive (brief) 
mention in almost every elementary textbook. Nonetheless, they can exhibit a startling 
degree of ‘accidental’ degeneracy, which is normally even when recognized, dismissed 
as either intractable or uninteresting (but see McIntosh 1968). The present paper 
demonstrates that, at least for some simple kind of ‘boxes’, these degeneracies are 
neither. Further, they provide examples in which a ring, rather than a group, must be 
introduced to deal with questions of degeneracy in a quantum-mechanical problem. 

In two dimensions, the problem of a particle confined in a square box is highly 
degenerate. From the conventional viewpoint, the energy levels exhibit both ‘systematic’ 
degeneracy, apparently due to the symmetry of the box, and ‘accidental’ degeneracy 
which is not due to any obvious symmetry. Sections 2 and 3 discuss this problem in 
detail-+ 2 dealing with the ‘systematic’ degeneracies, while 0 3 treats the ‘accidental’ 
ones. The method of 6 3 is not restricted to separable problems, and 8 4 discusses the 
case of a particle in an equilateral triangular box. Finally, 9 5 summarizes the main 
conclusions and discusses the range of applicability both of the method and of the 
general approach. 

2. The square box-ystematic degeneracy 

The particle in a square box is no stranger to anyone with even the briefest exposure to 
quantum mechanics. Two different problems are often considered with this name, and 
for both the solutions are easily obtained. For either, the differential equation to be 
satisfied is the free-particle equation 

AY = E Y ,  (1) 

but two choices of boundary conditions are common. For convenience, we will consider 
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a unit square bounded by the lines x = 0, x = n, y = 0, y = n. Then the conditions are: 

BC 1 Y ( x ,  y )  = 0 on the boundary ; 

BC2 Y ( x ,  y )  is periodic in x ,  y with period 211. 

Of these two ooundary conditions, BC2 are more general, in the sense that one can 
obtain any solution satisfying BC1 as a linear combination of degenerate solutions 
satisfying BC2. The converse, of course, is not true. This section will nonetheless discuss 
the problem under BC1, since the analysis is identical for the two problems but the 
greater number of solutions under BC2 would make the notation cumbersome. 

Under BC1, then, equation (1) separates ; the general solution and corresponding 
eigenvalue being, 

I ) ~ , ~  = sin mx sin ny E,,,n = m2 + n 2 .  

Examining the eigenvalues, we see that Em,n = En,m:  the solution obtained by inter- 
changing the x and y axes is degenerate with the original solution. Since this inter- 
change is one of the geometric symmetries of the square, we will begin discussing the 
systematic degeneracy by examining the behaviour of the eigenfunctions under this 
group of operators. 

The geometric symmetries for a square include rotations through multiples of 90°, 
reflection through the diagonals, and reflection through lines parallel to two sides and 
midway between them. The character table for this group, C4v, is given as table 1. 

Table 1. Character table for the group C4". 

A, 1 1 1 1 1 
A2 1 1 1 -1  - 1  
B, 1 1 -1 1 -1 
B, 1 1 -1  -1 1 
E 2 - 2  0 0 0 

Four non-degenerate representations and a single doubly-degenerate representation 
exist-presumably corresponding to wavefunctions of the types $,,, and $,,,n respec- 
tively. Figure 1, however, shows the first few eigenfunctions and their classification 
under C, ,  . 

Lines indicate nodal lines for the functions. (The corresponding solutions to the 
particle in a circular box are also included, for comparison.) The first three levels are 
as expected, being A , ,  E and B, symmetries respectively. The fourth, however, is of the 
reducible representation A, + B, , a fact masked by the functions' usual separated form. 
The equivalent functions, sin 3x sin y f sin x sin 3 y  (also shown in figure 1) which are 
of A, and B, symmetry respectively, show clearly that this degeneracy is not 'due to' 
the C4, symmetry. This is again brought home when we note that the corresponding 
circular box functions belong to quite different levels. Thus in going from the (Cmh) 
circular box to the 'broken' symmetry square (C4,), we see some levels split (eg 
m = 2 -, B, ,  B,) yet others coalesce (m  = 2, B, ; m = 0, A ,  -+ (3 , l ) ) .  This is not an 
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m=O m=l  m=2 m=O 

Figure 1. Lowest wavefunctions for particle in square and circular boxes. Interior lines 
indicate nodes, brackets set off degenerate pairs. Broken interior lines indicate an alter- 
native choice of the degenerate pair. 

isolated instance, as examination of the rest of the spectrum yields the following 
classification of states : 

Yn,n nodd= A, 

Yn,n n even = B, 

Ym,n odd, even = E 

Ym,n both odd = A, + B, 

Y',,, both even = A, + B,. 

The C4" symmetries do not alone account for the degeneracy of Y,,,, and Y',,, since 
this would require that any linear combinations of the functions would be mixed by 
operations in the group. As this is not the case, we must now look more closely at the 
problem. 

If the 'systematic' degeneracy is to be related to the symmetry of the problem but 
the simple point-group symmetries of the potential are not adequate, what other sym- 
metry have we so far ignored? We observe that the problem, as posed, is separable into 
two identical one-dimensional problems. This is indirectly reflected in the symmetries 
already noted, but the consequences should be examined directly. 

The one-dimensional component of the problem consists of the differential equation 
I a2 

with "(0) = "(72) = 0. The geometrical symmetry group for the problem consists of 
the identity I ,  and the reflection m : x -, n - x. Introducing two such systems, one in x 
and one in y, and a coordinate interchange operator a, we can find all the symmetries 
which arise from applying the basic symmetry operators successively: 

I = I ,  ud = a, bd' = mum, bh = m, eh, = ama 

m2 = 0 2  = I ,  R,  = am, R: = ma, R: = (am), = (ma),. 

Every product of the a, m and I operators can be shown to be equal to one of the above, 
which can be identified with the operators of C,". Thus, the symmetry already deter- 
mined, and no more, arises from the geometric symmetry of the one-dimensional 
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problem together with the fact that the problem of interest is the direct product of two 
such identical systems. 

There is however another label that can be associated with the one-dimensional 
problem-the eigenvalue E of H .  While this provides no information about degeneracies 
in one dimension, when the product of two such systems is considered these labels are 
no longer trivial. In particular, such states as sin x sin 3y -t sin J J  sin 3s, which we have 
shown to be unmixed by any geometric symmetry, satisfy 

( H ,  - H,) (sin x sin 3y + sin y sin 3x)  = - 2(sin x sin 3 y  - sin y sin 3x), 

the A,  state going over to the B, state (and conversely). Thus, the existence of H ,  and 
H ,  as 'symmetry' operators commuting with the full hamiltonian does complete the 
description of the degeneracy scheme we have observed. However, for each of H ,  , H ,  
and ( H ,  - H Y )  all the integral powers are linearly independent, so any group with any 
of these operators as elements must be infinite dimensional. While such groups have 
been studied to some extent, their representations are not nearly so accessible as those 
of finite groups. There exists a finite group sufficient for our purposes, however. Define 
an operator A by expanding Y in eigenfunctions of H ,  and H ,  ( H ,  H ,  and H ,  commute) 
as Y = & j k y j , (  and writing 

AY = C a j k u ( e j 1  e k ) Y j k  

where 
x 2 y  { - i  x < y .  

u(x ,y )  = 

For states Y of finite multiplicity, AY remains differentiable and continuous and still 
satisfies the boundary conditions, so A is an operator on the H eigenfunctions of any 
given energy. In particular 

A(sin mx sin ny f sin nx sin my)  = u(m, n)(sin mx sin ny T sin nx sin my) 

A(sin mx sin my)  = sin mx sin my. 

Thus A provides the mixing we are looking for. Since A' = (Am)' = (Aa)* = I ,  the 
group generated by the symmetries (I, m, a, A) is finite. The group has 32 elements in 
14 classes, and has the character table given in table 2. Of the fourteen possible sym- 
metry types, only A:, B:, E:, E, and E2 actually occur with BCl. With BC2, rep- 
resentations of types E: and E; also occur, though a larger group is necessary for 

Table 2. Contracted character table for the group generated by the symmetries ( I ,  m, a, A). 
Each entry represents one line from table 1. 

C4" 2C4,.€ C4"EEI 
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proper classification (as below). The remaining symmetries do not occur within the 
space of eigenfunctions of H .  

The above description applies as well for the problem under the periodicity 
conditions we called BC2. The momentum, or ‘infinitesimal displacement’ operator is 
an additional symmetry for the latter case. Further, for p ,  = ia/dx, p: = 2H,, so the 
energy label is redundant for momentum eigenstates. Again, p is unbounded, so as 
before we define a new operator which allows us to form a finite group under which 
every systematic degeneracy corresponds to an irreducible group representation. If 

is an eigenfunction of p x ,  p y  then as before, we define the operator 

A‘Y = A‘ 1 a k , , @ k , ,  = u k , l U ( K k  9 I C l ) @ k , l ’  

The group generated by (I, m, a, A’) then, is finite and properly classifies the momentum 
wavefunctions. It is too large for convenient representation, however. 

We can at last say that we have adequately described the ‘systematic’ degeneracy 
of the particle in a square box. It is seen to arise from the problem’s being the product 
of two identical one-dimensional problems. This, together with the existence of a 
mirror plane in the one-dimensional system, suffices to classify states according to 
table 2 .  If in addition the momentum commutes with the one-dimensional hamiltonian, 
the further classification derived from A‘ applies. 

3. The square box-accidental degeneracy 

We began discussing degeneracy for the square box by classifying degeneracies as 
‘systematic’ or ‘accidental’. Having disposed of the systematic structure characteristic 
of any such direct product problem, we will examine the remainder, which appears to 
arise specifically from the constancy of V(x, y )  throughout the box. That there is some- 
thing significant to explain may be seen by the following degeneracies D(E): 

with E,,, = El, ,  = E 5 , 5 .  

with E,,,, = E,,,, = E,,,,, = E,,,,, = E,,,,, = . .  

D(50) = 3, 

D(1105) = 8, 

D(5 928 325)  = 48. 

All these degeneracies should be compared with those discussed in the last section, 
where D(E,,,) = 1 and D(E,,,) = 2 were the only degeneracies found to arise from the 
obvious symmetries. 

In attacking this new problem, a fresh start seems necessary. In fact, to clarify the 
points to be made, we reformulate the problem slightly. With z = x + iy, 

A = a 2 / a x 2  + a 2 / a y 2  = a2/azaz* 

h ~ ( ~ )  = a2/azaz* yZ) = n ~ ( z ) ,  (1‘) 

Y ( Z + Z i )  = Y(z) z ,  = 2n, z2 = 2zi. ( 2 ’ )  
Suppose that, in fact, a solution YJz) with eigenvalue is has been found satisfying (1’) 
and (2’). We then see that for any complex constant a, Y,(az) is also a solution of (1’) 
with eigenvalue a*aA,. However, this will not in general satisfy (2’). The conditions 

so we can write 

subject to 



1542 G B Shaw 

under which Y,(cIz) is a proper solution are easy to obtain. The requirement is 

Y,(a(z+z,)) = Y,(az+azi) = Y,(cIz) i = 1,2. 

This will be automatically the case if clzi = C njzj for integers nj. 
We can write 

CI = a+b i  (a, b real), 

then 

a + bi = n, + n 2 i  

(a + bi)i = -b+ai  = n,+n,i n, integers. 

We thus have the result : 
For any solution Ys(z) to (1’) satisfying (2‘j, Y;,’(z) E Y,((a+bi)z) is also a proper 
solution for any integers a and b. If the eigenvalue of Ys is A,, the eigenvalue of 

is (a2 + b2)il,. 
In fact, if we can choose Y, to be the state with smallest eigenvalue, then every such 
proper solution may be a Y:3b. 

Clearly, while this analysis has by no means solved the problem, it has identified a 
powerful means for discussing the spectrum, etc. Our interest, however, is specifically 
in degeneracies. Consider a state Y:3b, where a + bi = (pl + iq,)(p2 + iq,) ; p i ,  qi integers. 
One could obviously form Y:*d with c+di = (pl -iq,)(p,+iq,). Further, 

l c , d  = Aa,b = (p: +q:)(P: + q : ) A s .  

Thus, degeneracy of levels may arise whenever the label for a state may be so factored. 
But the theory of factorization of numbers of the type m+ni (‘gaussian’, or complex 
integers) has long been known. Every such integer can be shown to be one of four 
mutually exclusive types (Le Vegue 1956); ‘units’ comprise f 1, f i ,  ‘conjugate primes’ 
comprise 1 f i, and the real ‘complex’ primes 3,7,19, . . . , whose complex conjugates 
are their unit multiples, ‘normal primes’ which are not multiples of their complex 
conjugates and include 2 f i, 3 f 2i, 4 f i, . . . , ‘composite numbers’ such as 

5 = (2+i)(2-i), (3+i) = (2-i)(1+i), 

One can then state : 
Factorization theorem (Gauss) : Every gaussian inte,r,er k can be expressed as a 

product k = IT;= p i  of prime gaussian integers. This representation is essentially 
unique; ie any other decomposition of k into primes has the same number of factors 
and can be so rearranged that corresponding factors are associates (unit multiples). 

We can see, then, that if a +bi has the prime decomposition a + bi = lli ,j  4:’. p y  
with qi conjugate primes, p j  normal primes, that D(A,,,) = l l j t j +  1). It is further clear, 
that the states degenerate with YaSb are labelled by a’, b‘; a“, b“; etc formed by taking 
conjugates of the terms in the product of primes in every possible combination. For 
instance, consider Y:,’. 

(l- i)(2+i)(2+ij  = 7 + i  

and 

(l-i)(2+i)(2-i) = 5 - 5 .  
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(The other conjugated terms simply yield the ‘systematic’ degenerate terms.) Thus, the 
degeneracy A,,l = %,,, mentioned at the beginning of the section can be obtained. 
Similarly, the decomposition (33 + 4i) = (2 + i) (3 - 2i) (4 + i) gives rise to the identities, 
i33,4 = i32,9 = A 3 1 , 1 2  = A24,23  also mentioned. 

Finally, we note that a proper solution to ( l ’ ) ,  (2’) is Yo(z) = exp[gz-z*)]. Writing 
y a , b  = Y2b = J a , b y o ,  we find that every solution to the problem is a Thus, 
ia,b = (a2 + b2)Ao = a’ + b2, and the degeneracy described as D(n,,b) is the full de- 
generacy of the problem. 

We thus have arrived at a systematic labelling and classification of the energy 
levels (via the vectors ( t l  , . . . , tk)) which determines the associated degeneracies simply. 
Still, the reduction to a form where a theorem from number theory could be applied 
may seem very artificial-far removed from the spatial and permutation symmetries to 
which we normally ascribe degeneracy, or the group structure that normally allows 
classification. It is therefore important to make clear just what symmetry is being 
used in this classification, and to what extent the kind of approach used in this problem 
could be expected to be of use in general. 

Because we have chosen periodic boundary conditions for our problem, we could 
consider our square ‘box’ not to be isolated, but rather to be one unit of an infinite 
two-dimensional lattice. The wavefunction on the square could also be considered to 
be defined throughout space by means of the periodicity condition. Each multiplication 
by a constant a + bi then produces a contraction of space by a factor (a2 + b2)l/’, com- 
bined by a rotation through an angle tan- ‘(bla), thereby bringing another (larger) unit 
square into the ‘standard’ square’s position. The importance of the potential energy 
being constant, then, is that this is the only potential which is invariant under all such 
transformations of the plane. 

The mathematical structure introduced is of some interest, and certainly is not one 
commonly used in mathematical physics. Defining step-up operators Ja,b by 

the Ja,b are all related to a spatial symmetry. In fact, they are the contraction-rotation 
operators just discussed. However, they are neither symmetries (they do not commute 
with the hamiltonian) nor do  they form a group (their inverses are not operators). Both 
of these differences from the group operations usually employed to describe degeneracies 
deserve special mention. First, the absence of inverses. The reason for this is easy to 
see. Any function which is periodic with a period 27c is obviously also periodic with 
period 2nn. It is not in general periodic with a period 27c/n. Thus contractions can 
be found which maintain periodicity on the lattice, while their inverses, dilations, 
cannot. The J’s then, do not form a group. Nonetheless, any product of two such 
operators is another such operator. Further, though this is less obvious, the sum of 
any two operators can be defined, and is such an operator. They can thus be shown 
to form a commuting ring; in fact, a special ring called an integral domain. The latter 
two mathematical objects are defined in the appendix. Their importance is that they 
are well studied, and in particular, factorization theorems exist for any such sets of 
operators (see for example, Birkhoff and MacLane 1953). Thus, for any problem in 
which solutions can be generated from ‘elementary’ solutions, as for the particle in a 
square box, the same kind of factorization and conjugation device will give a pro- 
cedure for finding states degenerate with the initial one. While the result need not 
always be so complete as in the present case, it can still be useful. 
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4. Degeneracy in the triangular box 

In the last section we completely analysed, in an unusual way, a problem which is 
so readily ‘solved’ that the result may seem to be trivial. To demonstrate that separ- 
ability of the equations does not affect the ease of solution, we will briefly discuss the 
problem of a particle in an equilateral triangular box by the same method. 

As before, we wish to solve equations (l’), (2‘), but now with: 

z1 = 2x, z2 = n(1 + J3i), z3 = x(1- 4 3 ) .  

In this case a + bi are determined by 

a + b i .  1 = a+bi  = n1+n2(l+iJ3)/2 

(a + bi)( 1 + iJ3)/2 = (a - bJ3)/2 + ( a43  + b)i = n3 + n,(l + i,/3)/2. 

Together, these equations imply that a+bi  = m+n(l+iJ3)/2 with m and n integers. 
(As z3 is an integral combination of z1 and z2,  its inclusion provides no additional 
restriction.) The a + bi (or their associated operators), form an integral domain as did 
the gaussian integers. Again, every such ‘integer’ can be uniquely (except for units) 
factored into primes. In this case, the units are f 1, f (1 + iJ3)/2, (1 - iJ3)2 ; and the 
self-conjugate primes are the real primes and the unit multiples of (3 + iJ3)/2. 

One has then, 

= ( m 2 + m n + n 2 ) i S  

where the si are the exponents of the (unique) prime factors, as before. 
Since this example is somewhat less familiar than the first, we will look briefly at 

some ‘accidentally’ degenerate levels in this system. Just as for the square box, levels 
of arbitrarily high degeneracy do occur (as indicated by the degeneracy function above), 
and just as for the square box the only degeneracy ‘expected’ is twofold degeneracy due 
to the rotational symmetry of the problem (C3J In this case, this systematic structure 
is properly accounted for by the geometric symmetry since the problem is not separable. 

Again like the square box, all solutions to the triangular problem are obtained 
from a single elementary solution. The solutions satisfying BC1 are a combination of 
two such simple solutions. Explicitly : 

Ye = exp[$az - a*z*)] + exp[Hoaz - [oaz]*)] + exp[$02az - [02az]*)] 

- exp[+(az* - a*z)] + exp[goaz* - [oa]*z)] - exp[$02az* - [02a]*z)]. 

Thus, 

Yl  = exp(i.v) + exp[i( - +y + +J3x)] + exp[i( - +y - +J~x)]  - exp( - iy) 

- exp[i(+y + +J3x)] - exp[i(+y - @x)] 

= @in y - 2 sin +y cos +J3x)  

Y3 = 0 (inconsistent with BC1) 
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y4 = sin 2y- 2 sin y cos J3x 

y7 = sin(3J3x) sin(45y) - sin(J3x) sin 2y  + sin(i3J3x) sin +y 
3x) sin(35y) - cos(J3x) sin 2y  - cos(r3J3x) sin )y 

Y~~ = sin 7y - 2 sin(37y) cos(+7J3x) 

Yk9 = 
cos(4J3x) sin y - cos(i3J3x) sin(&l3y)+ cos(35J3x) sin(+l ly) I sin(4J3x) sin y + sin(t3J3x) sin(tl3y) - sin(t5J3x) sin(+l ly) 

(the first ‘accidentally’ degenerate level). 

5. Discussion and summary 

In considering the range of applicability of the above approach, one can consider 
either what systems the specific method described can deal with, or what other problems 
may lend themselves to a solution of this general type (ie construction of a generating 
ring). The first question can be answered fairly easily. 

In two dimensions, the only potential which is both scale invariant and compatible 
with periodic boundary conditions is the constant potential. Thus, only ‘free’ particles 
can be treated. Further, the only boundaries for which periodicity conditions neces- 
sarily yield solutions vanishing on the boundary are rectangular, and right and isosceles 
triangular ones. In each case, only particular ratios of sides will yield an ‘integer like’ 
ring and systematic accidental degeneracies. Those which do can be analysed as above. 

In three or more dimensions (again for ‘free’ particles) the trick of writing the 
equation in complex form is not available. The ‘constants’ by which one transforms 
the space are therefore the affine transformations, which in n dimensions can be rep- 
resented n x n matrices. The consistency relations then restrict one to a particular set 
(ring) of such matrices which, when systematic degeneracies occur, is again integer-like. 
For these cases the energy spectrum may be obtained, as well as the degeneracy of any 
given state. The corresponding factorization theorems are not so strong, but should 
allow the determination of symmetry labels analogous to the ( t l ,  . . . , tr )  found for the 
square and triangle problems, along with expressions for the degeneracy associated 
with each label. Again, n-dimensional parallelopipeds and simplexes (n-triangles) could 
be so treated. 

The more interesting problem is that of obtaining a generative ring to analyse the 
degeneracy in problems where no physically intelligible (eg space or permutation group) 
accounts for it. No general criterion for determining when such an approach can be 
used is yet available. The similarity between the generating ring and a ‘spectrum 
generating algebra’ (SGA) is striking. The latter, finding increasing use in recent years 
(see, for example, Cordero and Ghirardi 1972) suggest that generating rings may become 
of utility in a larger and more intrinsically interesting set of quantum-mechanical 
problems. 
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Appendix 

DeJinition. A ring is a system of elements with two binary operations: addition and 
multiplication. It is an abelian group under addition (ie addition is associative and 
commutative, and there exists an additive identity and an additive inverse for every 
element. Multiplication is associative, and distributes with respect to addition. Thus, 
for every a, b, c in the ring A,  

a(bc) = (ab)c, a(b+c) = ab+bc, (a + b)c = ac + bc. 

Examples of rings are n x n matrices with the usual addition and multiplication, 
the polynomials in m independent variables, and the operators on a vector space with 
multiplication as successive application. 

Definition. An integral domain is a ring in which multiplication is commutative, a multi- 
plicative identity (unit) exists, and, for any element c # 0, 

ca = cb -, a = b (cancellation law). 

Examples of integral domains are the real and complex integers (all components 
integers) with normal addition and multiplication. 
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